Abstract
In this paper, we propose a new framework for discriminating the initial maneuver of a lane-crossing event from a driver correction event, which is the primary reason for false warnings of lane departure prediction systems (LDPSs). The proposed algorithm validates the beginning episode of the trajectory of driving signals, i.e., whether it will cause a lane-crossing event, by employing driver behavior models of the directional sequence of piecewise lateral slopes (DSPLS) representing lane-crossing and driver correction events. The framework utilizes only common driving signals and allows the adaptation scheme of driver behavior models to better represent individual driving characteristics. The experimental evaluation shows that the proposed DSPLS framework has a detection error with as low as a 17% equal error rate. Furthermore, the proposed algorithm reduces the false-warning rate of the original lane departure prediction system with less tradeoff for the correct prediction. © 2010 IEEE.
Author supplied keywords
Cite
CITATION STYLE
Angkititrakul, P., Terashima, R., & Wakita, T. (2011). On the use of stochastic driver behavior model in lane departure warning. IEEE Transactions on Intelligent Transportation Systems, 12(1), 174–183. https://doi.org/10.1109/TITS.2010.2072502
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.