TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds

195Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The economy of scale provided by cloud attracts a growing number of organizations and industrial companies to deploy their applications in cloud data centers (CDCs) and to provide services to users around the world. The uncertainty of arriving tasks makes it a big challenge for private CDC to cost-effectively schedule delay bounded tasks without exceeding their delay bounds. Unlike previous studies, this paper takes into account the cost minimization problem for private CDC in hybrid clouds, where the energy price of private CDC and execution price of public clouds both show the temporal diversity. Then, this paper proposes a temporal task scheduling algorithm (TTSA) to effectively dispatch all arriving tasks to private CDC and public clouds. In each iteration of TTSA, the cost minimization problem is modeled as a mixed integer linear program and solved by a hybrid simulated-annealing particle-swarm-optimization. The experimental results demonstrate that compared with the existing methods, the optimal or suboptimal scheduling strategy produced by TTSA can efficiently increase the throughput and reduce the cost of private CDC while meeting the delay bounds of all the tasks.

Cite

CITATION STYLE

APA

Yuan, H., Bi, J., Tan, W., Zhou, M. C., Li, B. H., & Li, J. (2017). TTSA: An Effective Scheduling Approach for Delay Bounded Tasks in Hybrid Clouds. IEEE Transactions on Cybernetics, 47(11), 3658–3668. https://doi.org/10.1109/TCYB.2016.2574766

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free