In this current work, thermal comfort for a cooling process inside a bus was described in a combined theoretical and experimental form. The bus was heated to 40 for 7 hours within climatic chamber and AC unit was turned on at the beginning of the test. Temperatures, humidity of air and air velocities were measured at certain points to observe effects of ambient conditions on passengers’ thermal comfort and physiology. Human body was assumed to be one complete piece which is composed of mainly core and skin compartments. Transient Energy Balance Model by Gagge was used for calculation of changes in thermal conditions. Transient heat and mass transfer between bus interior environment and passenger bodies during cooling period were calculated by a mathematical model. Effects of fast transient conditions on either sensible or latent heat transfer from body, temperatures of core and skin, thermal discomfort and thermal sensation which are all factors for human ergonomics were investigated in detail. The aim in this study is to describe a testing and thermal comfort calculation methodology for assessment of thermal comfort of a bus AC system’s cooling performance.In this current work, thermal comfort for a cooling process inside a bus was described in a combined theoretical and experimental form. The bus was heated to 40 for 7 hours within climatic chamber and AC unit was turned on at the beginning of the test. Temperatures, humidity of air and air velocities were measured at certain points to observe effects of ambient conditions on passengers’ thermal comfort and physiology. Human body was assumed to be one complete piece which is composed of mainly core and skin compartments. Transient Energy Balance Model by Gagge was used for calculation of changes in thermal conditions. Transient heat and mass transfer between bus interior environment and passenger bodies during cooling period were calculated by a mathematical model. Effects of fast transient conditions on either sensible or latent heat transfer from body, temperatures of core and skin, thermal discomfort and thermal sensation which are all factors for human ergonomics were investigated in detail. The aim in this study is to describe a testing and thermal comfort calculation methodology for assessment of thermal comfort of a bus AC system’s cooling performance.
CITATION STYLE
PALA, Ü. (2020). Investigation of Thermal Comfort for Bus Passengers During a Cooling Test Inside a Climatic Chamber. Politeknik Dergisi, 23(2), 547–555. https://doi.org/10.2339/politeknik.608597
Mendeley helps you to discover research relevant for your work.